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A review of the fundamentals of probability theory.
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1 Introduction
Probability, in addition to being fundamental to most areas of science, has immediate relevance to everyday life.
Despite this, probability theory did not see significant development until the late renaissance, later even than
differential calculus, which is perhaps a reflection of its reputation for being subtle and unintuitive.

In this review I will give a self-contained description of probability theory and some of its simplest applications.

2 Fundamentals
2.1 The Probability Function
Probability is defined over a set called the sample set (sometimes referred to as a sample space). The elements
of this set can be interpreted as “events” or “possibilities”. For example, the sample set of flipping a coin is
{heads, tails}; for rolling a cubical die it’s ℤ6; for 2d20 it’s ℤ20 × ℤ20. For a sample set
• The elements should be mutually exclusive in some sense.
• All possible outcomes should be contained in the set.

We define the probability function over a sample set Ω

Pr : 2Ω → [0, 1] (1)

2Ω is a somewhat fanciful notation for the power set of Ω (i.e. 2Ω = {𝐴 | 𝐴 ⊆ Ω}).¹ [0, 1] is the interval on ℝ from
0 to 1, inclusive of the endpoints.

To “sample” Ω means to select an element from it stochastically, such that the probability to select 𝜔 ∈ Ω is
Pr({𝜔}). This often coincides with some intuitive notion of sampling, such as the result of some physical process,
such as flipping a coin, though the general concept is more abstract and not contingent on such a process. A
common way to describe the probability of a finite sample set is with the “urn” analogy. For example, Pr({𝜔}) is
the probability to draw a marble with label 𝜔 from an urn.

A function must satisfy reasonable constraints to be interpretable as a probability function. For 𝐴,𝐵 ⊆ Ω

Pr(∅) = 0
Pr(Ω) = 1

𝐴 ∩ 𝐵 = ∅ ⟹ Pr(𝐴 ∪ 𝐵) = Pr(𝐴) + Pr(𝐵)
(2)

The first of these can be interpreted as the statement that sampling Ω results in some 𝜔 ∈ Ω. The second
condition states that we are certain to sample one of any elements of the sample set and serves as a normalization
condition for Pr.

The last property in (2) states that we can add the probabilities of disjoint sets. This lets us derive some further
properties. In the remainder of this section, let 𝐴,𝐵 ⊆ Ω. From the axioms of set theory

𝐴 = (𝐴 \ 𝐵) ∪ (𝐴 ∩ 𝐵) (3)

Combining this with the third line of (2) we find

Pr(𝐴) = Pr(𝐴 \ 𝐵) + Pr(𝐴 ∩ 𝐵) (4)

From this and the positive definiteness of Pr, it immediately follows that

Pr(𝐴) ≥ Pr(𝐴 ∩ 𝐵) (5)

Also, since 𝐴 ∪ 𝐵 = (𝐴 \ 𝐵) ∪ 𝐵 we have

Pr(𝐴 ∪ 𝐵) = Pr(𝐴) + Pr(𝐵) − Pr(𝐴 ∩ 𝐵) (6)

Note that this implies a “triangle inequality”

Pr(𝐴) + Pr(𝐵) ≥ Pr(𝐴 ∪ 𝐵) (7)

It is sometimes said that “the probability of 𝐴 or 𝐵 is Pr(𝐴) + Pr(𝐵)”, here we have seen that this is only true of
disjoint sets (in particular singleton sets of distinct elements, which is the statement this usually refers to).

Sometimes we will refer to the sample set as a statistical ensemble. This is a term common in physics. For
example the 6𝑁 -dimensional phase space of 𝑁  particles in a box can also be thought of as a statistical ensemble,

¹This notation comes from the fact that |2Ω| = 2|Ω|, that is 2Ω has 2|Ω| elements.
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where the probability is of each point in the phase space. We will make it more clear what this means in the case
of a continuous set in the next section.

2.2 Probability Measure
In this note we adopt the so-called measure-theoretic definition of probability, albeit somewhat informally. The
meaning of a probability function Pr perhaps seems intuitively obvious for discrete sets, but requires more
exposition for cases in which Ω is continuous.

For this we must introduce the concept of a measure. For our purposes a measure is a function 𝜇 : 2Ω → ℝ≥ such
that 𝜇(∅) = 0. We define a probability measure 𝑃  such that

Pr(𝐴) = ∫
𝐴
d𝑃 (8)

At this point the definition constitutes not much more than a change in notation defining integrals with respect to
some differential d𝑃 . Eventually this will allow us to deploy the machinery of integral calculus to probabilities on
continuous sets.

From the properties of Pr it then follows that ∫
Ω
d𝑃 = Pr(Ω) = 1, while Pr(𝐴 ∪ 𝐵) = Pr(𝐴) + Pr(𝐵) for 𝐴 ∩ 𝐵 =

∅ follows from the usual axioms of integration, which we will not detail here. (8) is more useful if we wish to
compute probabilities given some coordinate system 𝑥 : Ω → ℝ𝑛 for which we can define

d𝑃(𝑥) = 𝑝(𝑥) d𝑥 (9)

where 𝑝(𝑥) is known as a probability density. It follows trivially from what we have already discussed that
𝑝(𝑥) ≥ 0, ∀𝑥 and ∫d𝑥 𝑝(𝑥) = 1.

The density 𝑝(𝑥) is often referred to as a probability density function but we should emphasize that it need not be
a function in the formal sense since we only require that integrals of it over finite subsets of Ω be defined, and not
necessarily that 𝑝(𝑥) is finite or well-defined for all 𝑥. An important example of a density which is manifestly not
a function is the ironically named Dirac 𝛿-function, which we can take as being defined by the condition

∫
𝐴
d𝑥 𝑓(𝑥) 𝛿(𝑥 − 𝑥0) = {

𝑓(𝑥0) ⇐ 𝑥0 ∈ 𝐴
0 else (10)

Clearly 𝛿(𝑥 − 𝑥0) must be appropriately normalized ∫d𝑥𝛿(𝑥) = 1 to serve as a valid probability density. As a
probability density, the Dirac 𝛿 means, roughly “certain to be at the point 𝑥0”.

2.3 Cumulative Probability
An important special case is when the coordinate is one dimensional 𝑥 : Ω → ℝ, in which we refer to the
probability as univariate. In such cases we define the cumulative distribution function which is the anti-
derivative of the probability density

𝐹(𝑥) ≔ Pr(𝜉 ≤ 𝑥) = ∫
𝑥

−∞
d𝜉 𝑝(𝜉) (11)

² From this it follows that

Pr(𝑎 ≤ 𝑥 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) (12)

There’s not much to say about the cumulative probability in and of itself, but it is often a useful notational tool.

2.4 Multivariate Probability and Marginal Density
The general case where the sample set admits coordinates 𝑥 : Ω → ℝ𝑛 with 𝑛 > 1 is called multivariate
probability. The definition of the probability density in this case is a straightforward extrapolation of (9). For
example, in ℝ2

d𝑃(𝑥, 𝑦) = 𝑝(𝑥, 𝑦) d𝑥 d𝑦 (13)

In many applications we will be interested in integrating out some of the coordinates

d𝑃𝑋(𝑥) ≔ ∫d𝑦 d𝑃(𝑥, 𝑦) (14)

where the integral is over the domain of 𝑦. d𝑃𝑋 is known as a marginal probability measure. Of course, we
can define the density by d𝑃𝑋(𝑥) = 𝑝𝑋(𝑥) d𝑥 where 𝑝𝑋(𝑥) is known as a marginal density.

²The use of the symbol 𝐹  here may seem capricious, but it is commonly used. Often a probability density 𝑝 is written 𝑓 .
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It should be obvious that d𝑃𝑋 is itself a valid probability measure. Intuitively, we interpret it as “the probability
of 𝑥 regardless of 𝑦”. Because of this, in many contexts the distinction between probability and marginal
probability is implied only weakly.

2.5 Conditional Probability
What is the probability that 𝑥 ∈ 𝐴 on the condition that 𝑥 ∈ 𝐵? The preceding discussion does not make it
entirely clear what this means. To address this, we must define conditional probability Pr(𝐴|𝐵) (read “the
probability of 𝐴 such that 𝐵). Let’s impose some requirements on this definition. First, we’d like

Pr(𝐴|𝐵) ∝ Pr(𝐴 ∩ 𝐵) ∀𝐴,𝐵 ⊆ Ω (15)

i.e. that the conditional probability is always proportional to the probabilty over Ω. Next, we require

Pr(𝐵|𝐵) = 1 (16)

to coincide with our intuitive notion of conditioning (i.e. we must always have 𝑥 ∈ 𝐵 if we impose 𝑥 ∈ 𝐵 as a
constraint). We therefore define

Pr(𝐴|𝐵) ≔ Pr(𝐴 ∩ 𝐵)
Pr(𝐵)

(17)

It is not in general possible to define a fully self-consistent conditional probability measure. The root issue is that,
generically, the denominator of (17) for infinitessimal events vanishes, causing the would-be measure to diverge.
The best we can do is to define, for example

d𝑃(𝑥 | 𝑦 ∈ 𝐵) = d𝑥
Pr(𝐵)

∫
𝐵
d𝑦 𝑝(𝑥, 𝑦) (18)

which is only valid when Pr(𝐵) = ∫d𝑥∫
𝐵
d𝑦 𝑝(𝑥, 𝑦) > 0. We should caution that this definition does not seem to

be universally recognized.

The reader should be aware that a great deal of literature, particularly for machine learning, will casually
introduce conditional densities written 𝑝(𝑥 | 𝑦). Often enough careful thought will reveal problems with these. In
practice, the most important property of such objects is that they can be used to consistently define marginal
densities. For example

𝑝(𝑥) = ∫d𝑦 𝑝(𝑥 | 𝑦)𝑝(𝑦) (19)

which requires that

𝑝(𝑥 | 𝑦) = 𝑝(𝑥, 𝑦)
𝑝(𝑦)

(20)

at least in regions where 𝑝(𝑦) > 0. On the other hand, these objects may not have any obvious relationship to the
true conditional probabilities, so caution is advised.

2.6 Random Variables
When dealing with multivariate probability densities, it is often convenient to introduce the concept of random
variables. A random variable is a map 𝑋 : Ω →ℳ where ℳ is an 𝑛-dimensional differentiable manifold (which
we will usually take to be ℝ𝑛). Random variables are mostly a notational convenience that make it easier to talk
about more complex relationships between elements of a sample set, and they aren’t really any different from the
coordinates on Ω we’ve already been discussing. For example, let’s define 𝑓 : ℝ2 → ℝ and write

𝑍 = 𝑓(𝑋, 𝑌 ) (21)

where 𝑋,𝑌 , 𝑍 are random variables. By definition, the probability measure for 𝑍 is

d𝑃𝑍(𝑧) =d𝑧∫d𝑃𝑋𝑌 (𝑥, 𝑦) 𝛿(𝑧 − 𝑓(𝑥, 𝑦)) (22)

We will sometimes use the notation 𝑋 ∼ 𝑝 to mean that 𝑝 is the probability density for the random variable 𝑥,
read “𝑋 is distributed according to 𝑝”.

We say that two random variables are independent if their measures can be factorized

d𝑃𝑋𝑌 (𝑥, 𝑦) =d𝑃𝑋(𝑥) d𝑃𝑌 (𝑦) (23)
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The normalization conditions ensure that (23) is the unique factorization of d𝑃𝑋𝑌  (i.e. the factors are always the
marginal measures) when 𝑋 and 𝑌  are independent.

Two random variables are independent and identically distributed (abbreviated i.i.d.) if in addition to (23)
𝑝𝑋(𝜉) = 𝑝𝑌 (𝜉).

If we write an expression that relates multiple random variables, it must be possible to define them over the same
sample set so that they share an overall distribution called the joint distribution. For example, if we define two
random variables 𝑋,𝑌 , for any function 𝑓(𝑋, 𝑌 ) to make sense, it must be possible to define d𝑃𝑋𝑌 (𝑥, 𝑦).
Accordingly, 𝑋 and 𝑌  are independent iff 𝑝𝑋𝑌 (𝑥, 𝑦) = 𝑝𝑋(𝑥) 𝑝𝑌 (𝑦).

2.6.1 Example: Sum of Two Independent Random Variables
Consider 𝑍 = 𝑋 + 𝑌  where 𝑋 and 𝑌  are independent. According to our definition

𝑝𝑍(𝑧) = ∫d𝑥d𝑦 𝛿(𝑧 − 𝑥 − 𝑦) 𝑝𝑋(𝑥) 𝑝𝑌 (𝑦) (24)

Integrating over one of the variables we have

𝑝𝑍(𝑧) = ∫d𝑥𝑝𝑌 (𝑧 − 𝑥) 𝑝𝑋(𝑥) (25)

Note that we are treating it as implicit that 𝑝𝑍(𝑧) = 0 for any 𝑧 which is not expressible as 𝑧 = 𝑥 + 𝑦, which is
important if, for example, 𝑥 or 𝑦 have a finite range.

(25) states that the density of the sum of two random variables is the convolution of their densities. We will
repeatedly find this important when discussing prominent examples of probability densities.

2.7 Change of Coordinates
One of the useful consequences of defining probability as a measure is that it implicitly comes with the machinery
of differential geometry. It is true, for our purposes, by definition, that under a change in coordinates 𝑥 → 𝑦

d𝑃(𝑦) =d𝑃(𝑥)
𝑝′(𝑦) d𝑦 = 𝑝(𝑥) d𝑥

(26)

Therefore

𝑝′(𝑦) = 𝑝(𝑥)|𝜕𝑦
𝜕𝑥
|
−1

(27)

where |𝜕𝑦𝜕𝑥 | is the Jacobian determinant of 𝑦 with respect to 𝑥. We will not attempt to rigorously justify (27), but
it is derivable with the tools of differential geometry and measure theory. Fortunately it is also intuitive based on
remedial calculus alone.

2.7.1 Probability as a Differential Form
This section requires some knowledge of the exterior calculus and the language of differential forms.

If the sample space is an 𝑛-dimensional manifold, d𝑃  must be an 𝑛-form, which is unique up to an overall factor.
Therefore

d𝑃 = 𝑝(𝑥1, 𝑥2,…, 𝑥𝑛) (d𝑥1 ∧d𝑥2 ∧ ⋯ ∧d𝑥𝑛) (28)

Clearly (27) now follows from the standard transformation properties of the basis 𝑛-forms. On manifolds equipped
with a metric, we must include a geometric factor in explicit coordinate representations of the integration over
𝑝(𝑥)

Pr(𝐴) = ∫
𝐴
d𝑛𝑥

√
±𝑔 𝑝(𝑥) (29)

At our level of rigor, differential forms are essentially measures³, so this is consistent with our discussion in the
last section.

2.7.2 Example: Rotations
Consider the transformation

𝑥 ↦ 𝑅(𝜑) 𝑥 (30)

³Technically there is an important distinction involving orientation which is well beyond the scope of this review.
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where 𝑥 is a vector and 𝑅(𝜑) is a rotation matrix. Such matrices form a group, specifically SO(𝑁). One of the
properties of a group is that every element must have an inverse, in our caes 𝑅−1(𝜑)𝑅(𝜑) = 1. For 𝑥′ = 𝑅(𝜑) 𝑥 we
therefore have

𝑝′(𝑥′) = 𝑝(𝑥)| 𝜕𝑥
𝜕𝑥′

| = 𝑝(𝑅−1(𝜑)𝑥′) (31)

since |𝑅−1| = 1 is a property of SO(𝑁).

2.8 Bayes’ Lemma
We now come to a very famous but trivial result. By combining (17) for Pr(𝐴|𝐵) and Pr(𝐵|𝐴), we find

Pr(𝐴|𝐵) = Pr(𝐵|𝐴)Pr(𝐴)
Pr(𝐵)

(32)

One reason that this result is so famous is that it is very common for the probabilities of some set not to be
directly observable. That is, you may want to know Pr(𝐴|𝐵), but can only observe Pr(𝐵|𝐴). (32) relates these.

The factor Pr(𝐴) in the numerator of the right hand side of (32) is commonly referred to as a prior. As we will
discuss, in many applications it is not directly observable and must be postulated. The denominator Pr(𝐵) can be
thought of as a normalization factor, and is often determined by requiring Pr(Ω) = 1.

2.9 Epistemology
Most of the above discussion has been rather abstract, but to apply probability to the real world, we must resort
to some discussion of interpretation. We caution the reader that interpretation of probability theory is an
enormous subject in and of itself, in both the realms of pure mathematics and philosophy, but here our goal is to
avoid the proverbial rabbit hole and provide the bare minimal context required for a useful working knowledge of
probability.

There are primarily two equivalent interpretations of probability theory. As a common premise, imagine that we
have prepared some number 𝑛 of identical experiments. The word identical is doing a lot of work here, but for now
we decline a more detailed discussion of what it means. For our purposes it will suffice to assume we have
formulated some reasonable definition. The 𝑖th experiment concludes with an observation 𝜔𝑖 ∈ Ω, where Ω is the
sample space and the set of all possible outcomes of the experiment.

The frequentist interpretation asserts

Pr(𝐴) = lim
𝑛→∞

1
𝑛
∑
𝑛

𝑖=1
𝐼(𝜔𝑖 ∈ 𝐴) ∀𝐴 ⊆ Ω (33)

where 𝐼 is an indicator that gives 1 if its argument is true and 0 otherwise. Thus, in this interpretation, the
probability of 𝐴 is simply the ratio of events in 𝐴 to the total number of events as that number approaches
infinity. Of course, the statement Pr(𝐴) = 𝑎0 does not necessarily mean that it has been observed infinitely many
times, but that we could reject Pr(𝐴) = 𝑎0 as a plausible statement if repeated observations fail to converge to
this value.

The other prominent interpretation of probability theory is called the Bayesian interpretation. It is easier to
describe it by imagining that we have some theory the parameters of which we will collectively refer to as 𝜃.
Bayesian probability treats 𝜃 as a collection of random variables. Then, by definition

𝑃(𝜃|(𝜔1, 𝜔2,…, 𝜔𝑛)) =
𝑃((𝜔1, 𝜔2,…, 𝜔𝑛)|𝜃)𝑃 (𝜃)
𝑃 ((𝜔1, 𝜔2,…, 𝜔𝑛))

(34)

where (𝜔1, 𝜔2,…, 𝜔𝑛) is a sequence of observations. Unobservability of the denominator seems like a problem, but
as we have discussed it can be thought of as a normalization factor. 𝑃((𝜔1,…, 𝜔𝑛)|𝜃) should be possible to
compute from the theory and can be tought of as a requisite for a valid theory. The other factor in the numerator,
the prior 𝑃(𝜃), poses a more serious and fundamental challenge. One way to proceed would be to choose it as a
postulate, but in so doing we risk choosing a “pathological” prior, for example a delta function. Such pathological
priors could prevent 𝑃(𝜃|(𝜔1,…, 𝜔𝑛)) from converging to an empirically plausible result.

The relative merits of each of these two interpretations are still the subject of much debate. In my opinion, the
frequentist interpretation is simpler and comes with significantly less “conceptual baggage”, but these
interpretations are nevertheless equivalent. Furthermore, the procedure implied by the Bayesian interpretation,
which that interpretation treats as fundamental (i.e. using the axioms of probability theory to update assumptions

6



with new evidence) are of great practical importance even if one takes the frequentist view entirely literally. It is
useful to maintain a pluralistic mindset in regard to this subject, as it is for many others.

3 Statistics
A statistic is a functional of a probability density. In a sense, they describe the infinite dimensional space of all
possible probability densities in finite dimensional terms.

3.1 Expectation Value
Arguably the most important, and certainly the most common type of statistic is known as an expectation
value. For a random variable 𝑋 it is defined by

⟨𝑓(𝑋)⟩ = ∫
Ω
d𝑃(𝑥) 𝑓(𝑥) (35)

On a discrete set we can write

⟨𝑓⟩ = ∑
𝐴𝑗∈Ω

𝑓(𝐴𝑗)Pr(𝐴𝑗) (36)

where the 𝐴𝑗 are elements of a partition of Ω, that is ⋃𝑗𝐴𝑗 = Ω, 𝐴𝑖 ∩ 𝐴𝑗 = ∅,∀𝑖 ≠ 𝑗.

The variety of notations available for expectation values is bewildering. Here we will use ⟨⋅⟩, which is most
common among physicists. Mathemeticians will often use 𝐸(⋅), 𝐸[⋅], or 𝔼[⋅]. We will adopt the convention of
writing expressions inside the ⟨⋅⟩ as functions of random variables, such that the expectation is an integral over
densities of those variables. In contexts where it may be confusing what we are integrating over, we will write the
name of the random variable being integrated over in the subscript, e.g. ⟨⋅⟩𝑋.

It should be obvious that for any constant 𝑐, ⟨𝑐⟩ = 𝑐. The simplest non-trivial expectation value is then ⟨𝑋⟩,
which is called the mean. That is ⟨𝑋⟩ is the mean of the probability density 𝑝𝑋(𝑥).

Some simple examples are in order. For 𝑋 ∼ 𝛿(𝑥 − 𝑥0), we have ⟨𝑋⟩ = 𝑥0, since no other value is supported by
the density. For a “flat” distribution

𝑝(𝑥) = {1 ⇐ 𝑥 ∈ [0, 1]
0 ⇐ 𝑥 ∉ [0, 1] (37)

we compute

⟨𝑋⟩ = ∫
1

0
d𝑥𝑥 = 𝑥

2

2
|
𝑥=1

= 1
2

(38)

which conforms with the intuitive notion of the value “in the middle” of 𝑝𝑋. It should be obvious, but we
nonetheless emphasize, that ⟨𝑋⟩ need not be a “likely” value of 𝑋 in any sense. For example, for 𝑋 ∼ 𝛿(𝑥)+𝛿(𝑥−1)

2
we have ⟨𝑋⟩ = 1

2 , but we cannot sample any values in a neighborhood of 12 . ⟨𝑋⟩ is often interpreted as providing a
“typical value” of 𝑋, though, as we have seen, this interpretation has limitations depending on the distribution. If
the distribution has a very long tail, ⟨𝑋⟩ can be quite an atypical value since the distribution converges only very
slowly for large 𝑥.

We can sompute ⟨𝑓(𝑋)⟩ for any function 𝑓 for which the integral converges, but some of these statistics are so
commonly used that they have special names. The variance is

var[𝑋] ≔ ⟨(𝑋 − ⟨𝑋⟩)2⟩ (39)

which we can simplify to

var[𝑋] = ⟨𝑋2⟩ − 2⟨𝑋⟨𝑋⟩⟩ + ⟨𝑋⟩2 = ⟨𝑋2⟩ − ⟨𝑋⟩2 (40)

Sometimes the symbol 𝜎2 is associated with the variance, for example we may write 𝜎2𝑋 = var[𝑋]. 𝜎𝑋 = √var[𝑋]
is called the standard deviation. For Gaussian-like distributions (which we will introduce in detail in
Section 4.1), 𝜎 can be thought of as describing the “width” of the distribution.

Similarly

𝑚𝑛 =
⟨(𝑋 − ⟨𝑋⟩)𝑛⟩

𝜎𝑛𝑋
(41)
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are known as moments of the distribution of 𝑋. 𝑚3 is also called the skewness and 𝑚4 is also called the
kurtosis.

3.2 Mode
A mode is a point at which a distribution reaches its supremum

arg sup
𝑥
𝑝(𝑥) (42)

Distributions with a unique mode are called unimodal, those with exactly two distinct modes are bimodal. Of
course the modes can be computed by solving 𝜕𝑥𝑝(𝑥) = 0 and checking which results are maxima.

3.3 Quantiles
Quantiles, along with the mode, are arguably the only commonly used statistics which are not expressible as
expectation values. They are only relevant in cases where Ω is isomorphic with ℝ, in which sense they are
univariate statistics only. Consider

1
𝑞
= ∫

∞

𝜉
d𝑥 𝑝𝑋(𝑥) (43)

The quantile in this expression is 𝜉, which is the value such that “the rest of the distribution after 𝜉” makes up
1/𝑞 of the total probability. More generally, we can define a set {𝜉0, 𝜉1…, 𝜉𝑞} such that

1
𝑞
= ∫

𝜉𝑘+1

𝜉𝑘

d𝑥 𝑝𝑋(𝑥) (44)

That is, we can partition the interval on ℝ in which 𝑝𝑋 has support into 𝑞 parts, each with an equal total
probability of 1/𝑞. As an example, a 4-quantile is also called a quartile, using (37) restricted to [0, 1] as an
example we have

𝜉0 = 0 𝜉1 =
1
4

𝜉2 =
1
2

𝜉3 =
3
4

𝜉4 = 1 (45)

Alternatively, if we continue 𝑝𝑋(𝑥) to all of ℝ, keeping its value at 0 outside of [0, 1], we’d have 𝜉0 = −∞ and 𝜉4 =
∞. The 0th and 𝑞th 𝑞-quantiles are always the minimum or maximum values on which the distribution has
support, and can always be taken to be ±∞, for which reason they are usually not referred to. This means that
there are always 𝑞 − 1 non-trivial 𝑞-quantiles. In terms of the cumulative probability 𝐹𝑋 we have

1
𝑞
= 𝐹𝑋(𝜉𝑘+1) − 𝐹𝑋(𝜉𝑘) (46)

There is only a single finite 2-quantile and this is referred to as the median. It’s worth noting that the median is
often used along with or in place of the mean as indicating a “typical value”, but it is less sensitive to outliers in
the sense that a distribution which falls off only slowly toward ±∞ will tend to have a much larger (as in much
more positive or much more negative) mean than median.

If the sample set Ω has some concept of ordering we can define quantiles also for discrete sets, but we cannot in
general guarantee that all of the quantiles are defined. For example, consider the set {0, 1, 2}, with Pr(0) = 1

2 ,
Pr(1) = Pr(2) = 1

4 . Here 1 is the median since Pr({𝑥 | 𝑥 ≥ 1}) = Pr(1) + Pr(2) = 1
2 . 2 is the largest quartile since

Pr({𝑥 | 𝑥 ≥ 2) = Pr(2) = 1
4 . There are however, no 3-quantiles, since there is no 𝜉 ∈ {0, 1, 2} such that Pr({𝑥|𝑥 ≥

𝜉}) = 1
3 . This can only occur for discrete sets or discontinuous probability densities. All 𝑞-quantiles for all 𝑞 ≥ 2

exist for continuous densities.

Some fields of study make frequent use of 100-quartiles which are also known as percentiles.

As we have previously mentioned, the generalization of quantiles to higher dimensions is not straightforward. A
quantile in 𝑛 dimensions is an 𝑛 − 1 dimensional hypersurface, but it is also not in general unique. We can,
however, talk about quantiles of 1-dimensional marginal probability distributions. For example, if we have some
density 𝑝𝑋𝑌 (𝑥, 𝑦), we can discuss quantiles of 𝑝𝑋 and 𝑝𝑌 , that is, we let one of the coordinates define the
hypersurfaces which we take as the quantiles.

3.4 Multivariate Statistics
In most of the preceding discussion we have avoided explicitly specifying whether Ω has one or more dimensions.
Indeed, the generalization of (35) to multiple dimensions is trivial. Nevertheless, there are some common
notations, conventions and terminology specific to multivariate statistics, so we will review them here. We will

8



denote multidimensional random variables with an index, e.g. 𝑋𝑖, which unless otherwise specified we will take to
be vectors on ℝ𝑛.

The obvious generalization of the mean is

⟨𝑋𝑖⟩ = ∫d𝑛𝑥𝑥𝑖 𝑝𝑋(𝑥) (47)

The probability density 𝑝𝑋 here is no different than more explicitly multivariate densities we have already seen
such as 𝑝𝑋𝑌 (𝑥, 𝑦) except with a more compact notation. We will often write 𝜇𝑖𝑋 ≔ ⟨𝑋𝑖⟩, or simply 𝜇𝑖 for
convenience, when there is no risk of confusion.

While the generalization of the mean to higher dimensions is a vector, the generalization of the variance is a
symmetric matrix

Σ𝑖𝑗𝑋 ≔ ⟨(𝑋𝑖 − ⟨𝑋𝑖⟩)(𝑋𝑗 − ⟨𝑋𝑗⟩)⟩ (48)

This is referred to as the covariance matrix. When written in terms of two scalar random variables 𝑋 and 𝑌 ,
this is often written

cov[𝑋, 𝑌 ] ≔ ⟨(𝑋 − ⟨𝑋⟩)(𝑌 − ⟨𝑌 ⟩)⟩ (49)

which is of course a scalar. We can extend to higher dimensional 𝑋 and 𝑌

cov[𝑋𝑖, 𝑌 𝛼] = ⟨(𝑋𝑖 − ⟨𝑋𝑖⟩)(𝑌 𝛼 − ⟨𝑌 𝛼⟩)⟩ (50)

where we have written 𝑋 and 𝑌  with different types of indices to emphasize that they needn’t be of the same
number of dimensions to define the covariance. In such a case the covariance matrix is non-square. Σ𝑖𝑗𝑋 =
cov[𝑋𝑖, 𝑋𝑗] is sometimes called an auto-covariance matrix.

The correlation coefficient, is simply the covariance scaled by the standard deviation of each variable, for
example

corr[𝑋, 𝑌 ] ≔ cov[𝑋, 𝑌 ]
𝜎𝑋𝜎𝑌

(51)

which is only worth mentioning because it is frequently referred to.

Let’s take a moment to examine how the elements of Σ𝑖𝑗 should be interpreted. Clearly the diagonal elements are
merely the variances of each component. The off-diagonal terms can be written

cov[𝑋, 𝑌 ] = ⟨𝑋𝑌 ⟩ − 𝜇𝑋⟨𝑌 ⟩ − 𝜇𝑌 ⟨𝑋⟩ + 𝜇𝑋𝜇𝑌 = ⟨𝑋𝑌 ⟩ − 𝜇𝑋𝜇𝑌 (52)

We know that

⟨𝑋𝑌 ⟩ = ∫d𝑃𝑋𝑌 (𝑥, 𝑦) 𝑥𝑦 (53)

When 𝑋 and 𝑌  are independent we can factorize this into

(∫d𝑃𝑋(𝑥) 𝑥)(∫d𝑃𝑌 (𝑦) 𝑦) = 𝜇𝑋𝜇𝑌 (54)

in which case cov[𝑋, 𝑌 ] = 0. In the other limiting case, where 𝑋 = 𝑌 , we have cov[𝑋, 𝑌 ] = ⟨𝑋2⟩ − 𝜇2𝑋 = var[𝑋] =
var[𝑌 ]. Therefore, random variables with independent components have diagonal covariance matrices, and as we
increase their correlation we approach a uniform matrix with all elements equal to var[𝑋].

3.5 Characteristic Functions
The characteristic function of a random variable 𝑋 is the Fourier transform of its probability density

𝜙𝑋(𝑘) = ∫d𝑃𝑋(𝑥) 𝑒𝑖𝑘𝑥 = ⟨𝑒𝑖𝑘𝑋⟩ (55)

Basic facts about Fourier transforms tell us that this can be inverted

𝑝𝑋(𝑥) = ∫
d𝑘
2𝜋
𝑒−𝑖𝑘𝑥𝜙𝑋(𝑘) (56)
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Characteristic functions are useful mainly as an analytical tool the same way that Fourier transforms are useful
more generally. As an important example, consider the sum of two random variables 𝑍 = 𝑋 + 𝑌 . As we have seen
in (25), the probability density of 𝑍 is the convolution of those of 𝑌  and 𝑋. We can then write

𝑝𝑍(𝑧) = ∫d𝑥∫
d𝑘
2𝜋
∫ d𝑙
2𝜋
𝑒−𝑖𝑙𝑧𝑒𝑖𝑙𝑥𝑒−𝑖𝑘𝑥𝜙𝑋(𝑘)𝜙𝑌 (𝑙)

= ∫ d𝑙
2𝜋
𝑒−𝑖𝑙𝑧(∫d𝑥∫ d𝑘

2𝜋
𝑒𝑖(𝑙−𝑘)𝑥𝜙𝑋(𝑘)𝜙𝑌 (𝑙))

(57)

From this and the definition (55), we can simply read off the characteristic function for 𝑍

𝜙𝑍(𝑙) = ∫d𝑥∫
d𝑘
2𝜋
𝑒𝑖(𝑙−𝑘)𝑥𝜙𝑋(𝑘)𝜙𝑌 (𝑙) (58)

Recognizing that the Fourier transform of a plane wave is the 𝛿 function

𝛿(𝑥) = ∫ d𝑘
2𝜋
𝑒𝑖𝑘𝑥 (59)

we find

𝜙𝑍(𝑙) = ∫d𝑙 𝛿(𝑘 − 𝑙)𝜙𝑋(𝑘)𝜙𝑌 (𝑙) = 𝜙𝑋(𝑙)𝜙𝑌 (𝑙) (60)

More succinctly, for posterity

𝜙𝑋+𝑌 (𝑘) = 𝜙𝑋(𝑘)𝜙𝑌 (𝑘) (61)

That is, the characteristic of the sum of random variables is the product of their characteristic functions. This
should be familiar to anyone used to Fourier transforms as the convolution theorem, which says essentially the
same thing in somewhat different language.

The above can be trivially generalized to arbitrarily many variables, and to a general linear combination of those
variables by re-scaling

𝜙𝑎1𝑋1+⋯+𝑎𝑛𝑋𝑛
= 𝜙𝑋1

(𝑎1𝑘)⋯𝜙𝑋𝑛
(𝑎𝑛𝑘) (62)

Note also that from 𝜑𝑋(𝑘) = ⟨𝑒𝑖𝑘𝑋⟩, we can expand the exponential. We can always shift a random variable to
have zero mean by translation 𝑋 → 𝑋 − 𝜇 so that

𝜑𝑋(𝑘) = ⟨𝑒𝑖𝑘𝑋⟩ = 𝑒𝑖𝑘𝜇⟨∑
∞

𝑛=0

𝑖𝑛𝑘𝑛(𝑋 − 𝜇)𝑛

𝑛!
⟩ = 𝑒𝑖𝑘𝜇∑

∞

𝑛=0

𝑖𝑛𝑘𝑛𝜎𝑛𝑚𝑛
𝑛!

(63)

where 𝑚𝑛 = ⟨(𝑋 − 𝜇)𝑛⟩/𝜎𝑛 is the 𝑛th moment. Note that the 𝑛 = 1 term always vanishes, by construction. We
could have redefined 𝑋 → 𝑋′ = 𝑋−𝜇

𝜎  to eliminate both the phase 𝑒𝑖𝑘𝜇 and the 𝜎, which is sometimes convenient.
We will see in our discussion of some specific distributions that this expansion is sometimes useful.

4 Distributions
Here we discuss the properties of certain specific classes of probability density function. As we will see, one of
these in particular, the Gaussian or normal distribution, acts as a kind of limiting case of all other distributions,
in a sense that we will see below. Many of the other most important examples of specific classes of distributions
are formed by combining Gaussians in some way.

4.1 Gaussian Distribution
Name Parameters Support Mean Variance

𝒩(𝜇, 𝜎2) 𝜇 ∈ ℝ, 𝜎 > 0 ℝ 𝜇 𝜎2

The Gaussian or normal distribution is uniquely important in a sense we will describe below. The univariate
Gaussian distribution has the form

𝑋 ∼ 𝒩(𝜇, 𝜎)⟹ 𝑝𝑋(𝑥) =
1

𝜎
√
2𝜋
𝑒−12(

𝑥−𝜇
𝜎 )2 (64)

where 𝜇 ∈ ℝ and 𝜎 ∈ ℝ+ are parameters. Their names are not coincidental, since
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⟨𝑋⟩ = 𝜇

var[𝑋] = 𝜎2
(65)

The factor (𝜎
√
2𝜋)

−1
 should be thought of as simply a normalization factor for ensuring ∫d𝑥 𝑝𝑋(𝑥) = 1. Note

that the Gaussian is symmetric about 𝑥 = 𝜇. As a consequence, its skewness, and all of its odd-numbered
moments vanish.

Computing the cumulative probability of a Gaussian is non-trivial. Due to the importance of the distribution, a
transcendental function called the error function is defined

erf(𝑥) = 2√
𝜋
∫
𝑥

0
d𝜉 𝑒−𝜉2 (66)

This is simply an integral over half the Gaussian after a change of variables. This function is the subject of a great
deal of study in its own right, and its properties are extensively documented. The cumulative probability is
therefore

𝐹𝑥(𝑥) =
1
2
[1 + erf(𝑥 − 𝜇

𝜎
√
2
)] (67)

Arguably the property of this distribution that makes it so simple is that the characteristic function of a Gaussian
is also a Gaussian up to a normalization factor

𝜙(𝑘) = 𝑒𝑖𝑘𝜇𝑒−12𝜎2𝑘2 (68)

From this and (61) we can conclude that for two random variables 𝑋,𝑌 ∼ 𝒩(𝜇, 𝜎)

𝑍 = 𝑋 + 𝑌 ⟹ 𝑍 ∼ 𝒩(𝜇,
√
2𝜎) (69)

This is trivially generalized to the case of arbitrarily many independent i.i.d. random variables. This is an exact
special case of the more general central limit theorem which we discuss below.

4.1.1 Central Limit Theorem
The Central Limit Theorem (CLT) is arguably the single most important result in statistics, and as we will
briefly discuss below one of the things that makes empirical science possible.

Let {𝑋1, 𝑋2,…,𝑋𝑛} be a set of i.i.d. random variables. A natural question is what is the distribution of their sum,
that is, the distribution of

𝑋𝑛 ≔
𝑋1 +𝑋2 +⋯+𝑋𝑛

𝑛
(70)

We should expect that the distribution of 𝑋𝑛 depends on the distribution of each of the 𝑋𝑗. Naively, we might
also expect that this is true even in the limit 𝑛 → ∞. Remarkably, as we will show, this is not the case, instead
the distribution of 𝑋𝑛 is always a Gaussian, regardless of the distribution of each of the contituent variables.

To see how this occurs, we will make use of characteristic functions. Recalling the formula for the characteristic
function of a linear combination of random variables (62), we write

𝜙𝑋𝑛
(𝑘) =

√
𝑛∏

𝑛

𝑗=1
𝜙𝑋𝑗

(𝑛−12𝑘) =
√
𝑛𝜑𝑛𝑋(𝑛−

1
2𝑘) (71)

where 𝜙𝑋 is the common characteristic function of all the 𝑋𝑗’s. We have inserted the factor of 
√
𝑛 arbitrarily

using (62) for reasons that will soon become apparently. Without loss of generality, we can choose each ⟨𝑋𝑗⟩ = 0
and var[𝑋] = 1 (since this is just a translation and re-scaling, it should be trivial to transform them back at the
end of any calculation). Therefore

𝜙𝑋𝑛
(𝑘) =

√
𝑛(1 − 𝑘

2

2𝑛
+ 𝒪(𝑛−32𝑘3))

𝑛

=
√
𝑛(1 − 𝑘

2

2𝑛
)
𝑛

+ 𝒪(𝑛−32𝑘3) (72)

Using 𝑒𝑥 = lim𝑛→∞ (1 + 𝑥
𝑛)
𝑛, we find

𝜙𝑋𝑛
=
√
𝑛𝑒−𝑘

2
2 + 𝒪(𝑛−32𝑘3) (73)

As we have seen, the characteristic function of a Gaussian is itself a Gaussian, which is what we have here up to
corrections of order 𝑛−32𝑘3. So we have shown that
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lim
𝑛→∞

√
𝑛
𝜎
(𝑋𝑛 − 𝜇) ∼ 𝒩(0, 1) (74)

or, equivalently, after shifting by 𝜇 and scaling by 𝜎√𝑛

lim
𝑛→∞

𝑋𝑛 ∼ 𝒩(𝜇, 𝜎/
√
𝑛) (75)

That is, the arithmetic mean of i.i.d. random variables, each with mean 𝜇 and 𝜎2 approaches a Gaussian with
mean 𝜇 and variance 𝜎2/𝑛. Crucially, this does not depend on the distribution of each variable in the sum.

Unsurprisingly, the mean of 𝑋𝑛 is simply 𝜇, the mean of each contributing variable. The variance of 𝑋𝑛 however
is less than the variance of each 𝑋𝑗. It’s worth emphasizing that this is true of the mean 𝑋𝑛, but not the sum
𝑋1 +⋯+𝑋𝑛. An consequence of this with important practical implications is that, given any random process
which we can sample freely, we can always construct a statistic with arbitrarily small variance. While 𝑋𝑛 differs
from a Gaussian by the fourier transform of the 𝒪(𝑛−32𝑘3) terms in the general case, in the case where the
population distribution is also Gaussian, these correction terms vanish, and the distribution of the mean or sum is
always a Gaussian with variance exactly 𝑛𝜎2 for all values of 𝑛 (and cosequently the variance of the mean is
always 𝜎2/𝑛).

The CLT plays a special role in science in that it allows us to obtain results that do not depend on detailed
knowledge of probability distributions, in particular the uncertainty distributions of measurements. It also
provides with a universal algorithm for reducing certain types of uncertainty: take more measurements. Since the
variance of the mean is smaller than the variance of the population distribution, our confidence in the mena can
be higher than our confidence in any individual measurement. This provides us with rigorous justification for the
idea that taking more measurements reduces statistical uncertainties.

4.1.2 Multivariate Gaussian Distribution

Name Parameters Support Mean Variance

𝒩𝑛(𝜇, Σ) 𝜇 ∈ ℝ𝑛, Σ ∈ ℝ𝑛 ×ℝ𝑛 ℝ𝑛 𝜇 Σ

Generalizing 𝒩(𝜇, 𝜎2) to higher dimensions is fairly trivial, but it is such an important case that we will take a
moment to review it. We denote a set of random variables 𝑋 : Ω → ℝ𝑛 that are distributed according to a
multivariate Gaussian distribution as

𝑋 ∼ 𝒩𝑛(𝜇, Σ) (76)

where 𝜇 ∈ ℝ𝑛 and Σ ∈ ℝ𝑛 ×ℝ𝑛 is the covariance matrix. This is precisely the covariance matrix we have already
introduced Σ𝑖𝑗 = cov[𝑋𝑖, 𝑋𝑗]. It is left as an exercise for the reader to show that 𝑋 ∼ 𝒩𝑛(𝜇, Σ) ⇒ Σ𝑖𝑗 =
cov[𝑋𝑖, 𝑋𝑗]. The probability density function can be obtained via normalization and is given by

𝒩𝑛(𝜇, Σ) =
1

√(2𝜋)𝑘 det(Σ)
exp(−1

2
(𝑥 − 𝜇)TΣ−1(𝑥 − 𝜇)) (77)

Another useful fact about multivariate Gaussian variables is that the marginal distribution of the 𝑖th component
variable is itself a Gaussian with variance Σ𝑖𝑖. More generally, the marginal distribution for any subset of variables
is simply the multivariate Gaussian with the variables in the complement of the subset deleted. For example, given
variables (𝑋1, 𝑋2, 𝑋3) ∼ 𝒩(𝜇,Σ), the marginal distribution for (𝑋1, 𝑋2) is simply 𝒩((𝜇1, 𝜇2), Σ(12)) where Σ(12)
is Σ with the third row and column deleted. Showing this is tedious but can be done directly by integration.

Conditional distributions of the component variables are also Gaussian, but less straightforward. Suppose we
partition 𝑋 = (𝑋1

𝑋2
) where 𝑋1 : Ω → ℝ𝑞 and 𝑋2 : Ω → ℝ𝑛−𝑞. Accordingly we write

𝜇 = (𝜇1𝜇2
) Σ = (Σ11Σ21

Σ12
Σ22

) (78)

Then 𝑝𝑋1 | 𝑋2
 is a multivariate Gaussian with

𝜇′ = 𝜇1 +Σ12Σ−122 (𝑋2 − 𝜇2)

Σ′ = Σ11 −Σ12Σ−122Σ21
(79)

As Gaussian distributions are so common in nature, thanks in no small part to CLT, the multivariate Gaussian
distribution has many important applications, some of which we will explore later.
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4.2 Γ Distribution
The class of 1-dimensional distributions which maximize entropy for a fixed ⟨𝑋⟩ is called the Γ distribution. We
will leave the formal introduction of entropy to sections on information theory, and focus on the 𝜒2 distribution,
an important special case of Γ distribution.

4.2.1 𝜒2 Distribution

Name Parameters Support Mean Variance

𝜒2(𝑘) 𝑘 ∈ ℤ> ℝ≥ 𝑘 2𝑘

The 𝜒2 statistic is defined as

𝑄 =∑
𝑘

𝑗=1

(𝑋𝑗 − 𝜇𝑗)
2

𝜎2𝑗
(80)

where 𝑋𝑗 are i.i.d. random variables, 𝜇𝑗 = ⟨𝑋𝑗⟩ and 𝜎𝑗 = var[𝑋𝑗]. In the special case where the 𝑋𝑗 ∼ 𝒩(𝜇𝑗, 𝜎𝑗),
𝑄 ∼ 𝜒2(𝑘) where 𝜒2(𝑘) is known as the 𝜒2 distribution with 𝑘 degrees of freedom. It is given by

𝑝𝑄(𝑥) =
𝑥𝑘2−1𝑒−𝑥2
2𝑘2Γ(𝑘/2)

∀𝑥 ≥ 0 (81)

where Γ(𝑥) is the Γ function (Γ(𝑛) = (𝑛 − 1)! for 𝑛 ∈ ℤ≥). We will not derive this here, but suffice it to say that it
can be derived from (80) and characteristic functions.

The 𝜒2 distribution is useful in hypothesis testing. If we hypothesize that a sequence of random variables 𝑋𝑗 are
normally distributed, by definition their 𝜒2 statistic should fall in this distribution. We can use (81) to compute
the cumulative probability of this the value obtained, which we expect to be roughly 𝑘. If the value we obtain for
𝑄 is much smaller than 𝑘, it is an indication that the 𝑋𝑗 have a more sharply peaked distribution than we
expected (perhaps indicating that our predictions were “suspiciously good”). If the value we obtain is much
greater than 𝑘, it indicates that our predictions are poorer than expected, perhaps ruling out our fit.

4.2.2 General Γ Distribution

Name Parameters Support Mean Variance

Γ(𝛼, 𝛽) 𝛼 > 0, 𝛽 > 0 ℝ≥ 𝛼
𝛽

𝛼
𝛽2

We have seen that the 𝜒2 distribution is of the form 𝑥𝑎𝑒−𝑏𝑥. The class of distributions of this form, with proper
normalization are Γ distributions, with the general form

𝑝(𝑥) = 𝑥
𝛼−1𝑒−𝛽𝑥𝛽𝛼

Γ(𝛼)
∀𝑥 ≥ 0 (82)

Note that we are somewhat confusingly re-using the symbol Γ for both the Γ function and the Γ distribution.

4.3 Β (Beta) Distribution
Name Parameters Support Mean Variance

Β(𝛼, 𝛽) 𝛼 > 0, 𝛽 > 0 [0, 1] 𝛼
𝛼+𝛽

𝛼𝛽
(𝛼+𝛽)2(𝛼+𝛽+1)

I will mention the Β distribution only briefly (this should be read as an uppercase 𝛽, not the latin capital “B”).
This distribution is defined only on [0, 1], and is given by

𝑝(𝑥) = Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

𝑥𝛼−1(1 − 𝑥)𝛽−1 ∀𝑥 ∈ [0, 1] (83)

This distribution is notable mostly because it is a class of analytic distributions on [0, 1]. It is frequently used as a
Bayesian prior distribution for parameters on finite intervals.

4.4 Bernoulli Distribution
Name Parameters Support Mean Variance

Bern(𝑝) (not standard) 𝑝 ∈ [0, 1] ℤ2 𝑝 𝑝(1 − 𝑝)
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We have yet to discuss the simplest possible non-trivial probability sample set: one with |Ω| = 2. Due to the
properties of probability, the only possible probability function over this sample set is

𝑃(𝑘) = {𝑝 ⇐ 𝑘 = 1
1 − 𝑝 ⇐ 𝑘 = 0 (84)

We have expressed the argument 𝑘 as an integer, but of course we can define this distribution for any cardinality 2
set by mapping ot to ℤ2. Often it is more convenient to write this as

𝑃(𝑘) = 𝑝𝑘(1 − 𝑝)1−𝑘 (85)

It is trivial to show that the mean of this distribution is 𝑝 and its variance is 𝑝(1 − 𝑝) by direct calculation.

The extremely, even maximally simple form of distribution means there is not much to say about it in and of
itself. However, as we will see, it can be used to construct many other distributions. In this note we will write
random variables in this distribution 𝑋 ∼ Bern(𝑝), though we should emphasize that this is not a standard
notation. Sometimes the Bernoulli distribution is written 𝐵(𝑝), but this risks confusion with the binomial or beta
distributions.

4.5 Binomial Distribution
Name Parameters Support Mean Variance

Binom(𝑛, 𝑝) 𝑛 ∈ ℤ≥, 𝑝 ∈ [0, 1] ℤ≥ 𝑛𝑝 𝑛𝑝(1 − 𝑝)

Given a set of variables 𝑋𝑗 ∼ Bern(𝑝), the distribution of the sum

𝑋 =∑
𝑛

𝑗=1
𝑋𝑗 ∼ Binom(𝑛, 𝑝) (86)

is distributed according to the binomial distribution, given by

𝑃(𝑘) = 𝑛!
𝑘!(𝑛 − 𝑘)!

𝑝𝑘(1 − 𝑝)𝑛−𝑘 (87)

The coefficient 𝑛!
𝑘!(𝑛−𝑘)!  is known as the binomial coefficient, often written (𝑛𝑘). More prosaically, the binomial

distribution is the distribution of the number of “successes” (results of 1) in 𝑛 samples of the Bernoulli
distribution with probability 𝑝 (which can also be thought of as “weighted coin flips”). Since 𝑋 is expressible as a
sum over i.i.d. variables, in accordance with the CLT, it approaches as Gaussian with mean 𝑛𝑝 and variance
𝑛𝑝(1 − 𝑝) for large 𝑛, meaning that the binomial distribution approaches the Gaussian distribution for large 𝑛.

4.6 Poisson Distribution
Name Parameters Support Mean Variance

Pois(𝜆) 𝜆 > 0 ℤ≥ 𝜆 𝜆

The Poisson distribution is that of numbers of events which occur with a “fixed probability per unit time”, a
notion we will make more precise in the following.

Suppose that we sample a Bernoulli distribution once every time interval of duration 𝛿𝑡. Let Δ be a fixed time
duration, and let 𝑛 𝛿𝑡 = Δ. We can take the limit 𝛿𝑡 → 0, or equivalently 𝑛 → ∞ while Δ is held fixed. Then let
𝑝 = 𝜆

𝑛  for each Bernoulli distribution each 𝛿𝑡 interval. As we have seen, this is merely a binomial distribution with
𝑝 = 𝜆

𝑛 , so that the probability function is

𝑃(𝑘) = lim
𝑛→∞

𝑛(𝑛 − 1)(𝑛 − 2)⋯(𝑛 − 𝑘 + 1)
𝑘!

(𝜆
𝑛
)
𝑘

(1 − 𝜆
𝑛
)
𝑛−𝑘

= lim
𝑛→∞

𝑛𝑘 + 𝒪(𝑛𝑘−1)
𝑘!

(𝜆
𝑛
)
𝑘

(1 − 𝜆
𝑛
)
𝑛−𝑘

= lim
𝑛→∞

𝜆𝑘

𝑘!
(1 − 𝜆

𝑛
)
𝑛−𝑘

(88)

In the first line we have simply written the binomial coefficient 𝑛!
𝑘!(𝑛−𝑘)!  in a more suggestive way. Using the

identity lim𝑛→∞ (1 − 𝜆
𝑛)
𝑘 = 𝑒−𝜆 we find a simple expression for the Poisson distribution
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𝑃(𝑘) = 𝜆
𝑘𝑒−𝜆

𝑘!
(89)

This makes more rigorous our whimsical notion of “fixed probability per unit time”. We could have written the
derivation above in terms of ( 𝜆Δ)𝛿𝑡, taking the limit 𝛿𝑡 → 0 (equivalent to 𝑛 → ∞). In this sense 𝜆Δ  can be
interpreted as a probability per unit time. Note that the parameter 𝜆 > 0 is not bounded above, as we may have
many occurrences of an event in time Δ.

We might expect that, since we have derived it by taking the 𝑛 → ∞ limit of the binomial distribution, that the
Poisson distribution is merely the Gaussian distribution. The reason this is not the case is essentially that the
domain of the Poisson distribution is ℤ≥, not ℝ as for the Gaussian (i.e. not only integer but also positive).
Indeed, the CLT manifests itself in that the Poisson distribution approaches the Guassian distribution for large 𝜆.

5 Estimators and Hypothesis Testing
We cannot observe probability distributions directly, instead they must be inferred form statistical properties of
samples. For example, if by hypothesis we observe the outcome of a process that’s distributed according to
𝒩(𝜇, 𝜎), we cannot determine 𝜇 or 𝜎 exactly, but instead must estimate them from the properties of a finite
sample. A statistic that we use to estimate a distribution parameter is called an estimator. These are of great
practical importance, so we will discuss them in more detail in this section.

5.1 Expected Error
As estimators are computed from finite samples, they will themselves have statistical properties that must be
understood for them to be useful. An estimator can be expressed as some function of random variables
𝜃(𝑋1,…,𝑋𝑛). Estimators are frequently denoted with a ^, a convention we will adhere to here. We may hide the
𝑋𝑗 dependence for convenience where there is no risk of confusion. We’d like to quantify the difference between
our estimator 𝜃 and some parameter of the hypothesized distribution 𝜃, so it makes sense to consider the mean
quared error (MSE) defined as ⟨(𝜃 − 𝜃)

2
⟩ (note that this is only the same thing as the variance of 𝜃 is indeed

the mean of 𝜃, a topic we will broach momentarily). Note that

MSE[𝜃] ≔ ⟨(𝜃 − 𝜃)
2
⟩ = ⟨𝜃2⟩ − 2𝜃⟨𝜃⟩ + 𝜃2 (90)

but by splitting the first term on the right hand side using var[𝜃] = ⟨𝜃2⟩ − ⟨𝜃⟩
2
 and re-combining terms we find

MSE[𝜃] = (⟨𝜃⟩ − 𝜃)
2
+ var[𝜃] (91)

The square root of the first term ⟨𝜃⟩ − 𝜃 is called the bias, and is simply the difference between the mena of the
estimator and the parameter it is supposed to estimate. (91) shows an important fundamental limitation of all
statistical estimators. Both the bias and the variance contribute to the expected error. Usually we seek an
estimator which minimizes the MSE. In many cases, we may use an unbiased estimator, meaning an estimator
for which ⟨𝜃⟩ = 𝜃, however, in practice this often comes at the expense of var[𝜃]. This is an important concept in
statistical learning known as the bias-variance tradeoff. As we will discuss in more detail in a future section in
empirical risk minimization, typically more “finely detailed” models with a larger number of parameters have a
small bias but large variance, whereas simpler models with fewer degrees of freedom have smaller variance but in
some cases may have irreducible bias.

5.2 Sample Mean
As we have discussed, the CLT is suggestive of a way to estimate the mean ⟨𝑋⟩. Since the distribution of ∑𝑗𝑋𝑗
for i.i.d. random variables approaches 𝒩(𝜇, 𝜎√𝑛), we can take as an estimator of the sample mean (𝑋1 +⋯+
𝑋𝑛)/𝑛. That is, given a series of random variables 𝑋1,…,𝑋𝑛, we take as our sample mean estimator

�̂� = 1
𝑛
∑
𝑛

𝑗=1
𝑋𝑗 (92)

and the CLT guarantees that ⟨�̂�⟩ = 𝜇 where 𝜇 is the true mean of the population distribution. If the population
distribution is Gaussian, also by the CLT we have var[�̂�] = 𝜎2

𝑛 , otherwise this will be approximately true for large
𝑛.

Note that in the above it may appear that we conflated random variables 𝑋𝑗 with “observation measurements”.
We can do this becuase the ensemble of all sequences of measurements is the same as the statistical ensemble of
the random variables 𝑋1,…,𝑋𝑛, under the assumption that observations are i.i.d. In other words, we should
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express estimators as a function of random variables, a particular sequence of measurements corresponds to a
particular realization of the sequence of random variables.

5.3 Sample Variance
From the definition of variance, we might assume a good estimator might be

�̃�2 = 1
𝑛
∑
𝑛

𝑗=1
(𝑋𝑗 − �̂�)

2 (93)

(the use of a ∼ rather than a ^ here is deliberate). The mean of this estimator is

⟨�̃�2⟩ = 1
𝑛
∑
𝑛

𝑗=1
(⟨𝑋2

𝑗 ⟩ − 2⟨𝑋𝑗�̂�⟩ + ⟨�̂�2⟩)

= 1
𝑛
∑
𝑛

𝑗=1
(𝜇2 + 𝜎2 − 2⟨𝑋𝑗�̂�⟩ + 𝜇2 +

𝜎2

𝑛
)

= 2𝜇2 + 𝑛 + 1
𝑛

𝜎2 − 2⟨𝑋�̂�⟩

(94)

where 𝜇 = ⟨𝑋⟩ and 𝜎2 = var[𝑋]. Here we use 𝑋 to mean any 𝑋𝑗 since they are identically distributed. We have
also repeatedly used ⟨𝑋2⟩ = 𝜇2 + 𝜎2. Now we need

⟨𝑋𝑗�̂�⟩ =
1
𝑛
∑
𝑛

𝑘=1
⟨𝑋𝑗𝑋𝑘⟩ =

1
𝑛
(⟨𝑋2⟩ +∑

𝑘≠𝑗
⟨𝑋𝑗𝑋𝑘⟩)

= 1
𝑛
(𝜇2 + 𝜎2 + (𝑛 − 1)𝜇2)

= 𝜇2 + 𝜎
2

𝑛

(95)

Combining this with (94) we find

⟨�̃�2⟩ = 2𝜇2 + 𝑛 + 1
𝑛

𝜎2 − 2𝜇2 − 2𝜎
2

𝑛
= 𝑛 − 1

𝑛
𝜎2 (96)

From this we see that �̃�2 is biased in that its mean differs from 𝜎2 by a factor of (𝑛 − 1)/𝑛. Knowing this, it is
trivial to construct the unbiased estimator

�̂�2 = 1
𝑛 − 1

∑
𝑛

𝑗=1
(𝑋𝑗 − �̂�)

2 (97)

This result is known as the scourge of statistics undergraduates everywhere. Fortunately, for large 𝑛 the bias of �̃�2
becomes negligible, so the discrepancy between this and the unbiased estimator �̂�2 tends not to be relevant in
applications with appreciable sample sizes. Note that �̂�, not 𝜇 appears in our expression for �̂�2, since we can
oberve �̂� but not 𝜇.

As one should expect, var[�̂�2] ∝ 𝜎4. Deriving the estimator variance is tedious, but straightforward, so we merely
state it here without proof

var[�̂�2] = 𝜎
4

𝑛
(𝑚4 − 1 +

2
𝑛 − 1

) (98)

where 𝑚4 is the fourth moment of the population distribution. Notably, for a Gaussian population distribution
this reduces to var[�̂�2] = 2𝜎4

𝑛−1 . In either case, it is useful to know that the variance of this estimator decreases as
1/𝑛, which is the same as for var[�̂�].

5.4 Maximum Likelihood Estimation (MLE)
To fit a theory with parameters 𝜃 to observation data 𝑥, we should maximize the probability 𝑃(𝑥|𝜃). This
procedure is known as a likelihood fit, or maximum likelihood estimation. Usually, rather than maximizing
𝑃(𝑥|𝜃) directly, we maximize its logarithm, and define the log likelihood function

ℓ(𝜃) = log[𝑃 (𝑥|𝜃)] (99)

The maximum likelihood estimate is then

𝜃 = argmax
𝜃
ℓ(𝜃) (100)
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The logarithm is useful for numerical stability, and because many probability distributions are either exponential,
can be easily factorized, or both.

5.4.1 With Gaussian Noise
Consider, as a hypothesis

𝑌 = 𝑓(𝑋; 𝜃) + 𝜀 (101)

where 𝑋, 𝑌  and 𝜀 are random variables. By assumption 𝜀 ∼ 𝒩(0, 𝜎) is independent of both 𝑋 and 𝑌 . 𝜃 is a set of
model parameters which we wish to estimate by maximizing the probability of a sequence of observations 𝑂 =
{(𝑥1, 𝑦2), (𝑥2, 𝑦2),…, (𝑥𝑛, 𝑦𝑛)}.

Since 𝑌 − 𝑓(𝑋; 𝜃) = 𝜀, the random variable 𝑌 − 𝑓(𝑋; 𝜃) ∼ 𝒩(0, 𝜎). By assumption, each observation (𝑥, 𝑦) is a
sample of (𝑋, 𝑌 ). Then

𝑃(𝑂|𝜃) ∝∏
𝑛

𝑗=1
exp
[
[
[−1
2
(
𝑦𝑗 − 𝑓(𝑥𝑗; 𝜃)

𝜎
)
2

]
]
] (102)

We will not bother computing the normalization factor for 𝑃(𝑂|𝜃) since our goal will be to minimize ℓ(𝜃), which
we will define without regard to normalization

ℓ(𝜃) =∑
𝑛

𝑗=1
(
𝑦𝑗 − 𝑓(𝑥𝑗; 𝜃)

𝜎
)
2

(103)

This tells us that the maximum likelihood model can be determined by minimizing the sum of squares of the
model error for all observations 𝑦𝑗 − 𝑓(𝑥𝑗; 𝜃), weighted by the variance 𝜎. In realistic cases, the assumed error
variance 𝜎2 is not necessarily the same for each observation. We can generalize to this case by assuming 𝑌𝑗 =
𝑓(𝑋𝑗; 𝜃) + 𝜀𝑗 where the 𝑋𝑗’s and 𝑌𝑗’s are by hypothesis each distributed the same as 𝑋 and 𝑌  respectively, but
the 𝜀𝑗 ∼ 𝒩(0, 𝜎𝑗). Therefore, we can generalize (103) to

ℓ(𝜃) =∑
𝑛

𝑗=1
(
𝑦𝑗 − 𝑓(𝑥𝑗; 𝜃)

𝜎𝑗
)
2

(104)

By minimizing ℓ with respect to 𝜃 we now have a general formual for fitting model parameters 𝜃 to observations.
This required us to assume the distribution of 𝜀, but notably it did not require us to assume any particular form
of 𝑓 . This formula is therefore valid for any hypothesized 𝑓 . In the case where 𝑓(𝑥; 𝜃) is linear in both 𝑥 and 𝜃, the
model which minimizes ℓ(𝜃) is known as a linear regression.

5.4.2 Of a Binary Variable
Now we suppose instead that 𝑌 : Ω → ℤ2 and 𝑋 : Ω → ℝ. We have already seen that the unique probability
distribution for a sample set with cardinality 2 is the Bernoulli distribution, which has a single parameter 𝑝. We
take as our hypothesis

𝑌 ∼ Bern(𝑝) 𝑝 = 𝑓(𝑋; 𝜃) (105)

so that

𝑃(𝑂|𝜃) ∝∏
𝑛

𝑗=1
𝑓𝑦𝑗(𝑥𝑗; 𝜃)(1 − 𝑓(𝑥𝑗; 𝜃))

1−𝑦𝑗 (106)

Then, taking the log of the Bernoulli distribution, up to a constant we have

ℓ(𝜃) =∑
𝑛

𝑗=1
[𝑦𝑗 log(𝑓(𝑥𝑗; 𝜃)) + (1 − 𝑦𝑗) log(1 − 𝑓(𝑥𝑗; 𝜃))] (107)

For this to make sense, we must have 0 ≤ 𝑓(𝑥; 𝜃) ≤ 1. One possible choice for 𝑓 is

𝑓(𝑥; 𝜃) = 1
1 + 𝑒−ℎ(𝑥;𝜃)

(108)

where ℎ : ℝ → ℝ. The function (1 + 𝑒−𝑥)−1 is known as the logit function. The model which minimizes ℓ in the
case where ℎ(𝑥; 𝜃) is linear in both 𝑥 and 𝜃 is called a logistic regression. Note that

ℎ(𝑥; 𝜃) = log[ 𝑓(𝑥; 𝜃)
1 − 𝑓(𝑥; 𝜃)

] (109)
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Since 𝑓 is playing the role of a probability (the parameter 𝑝 of the Bernoulli distribution), ℎ is also known as the
log odds.

Our choice of 𝑓 was of course completely arbitrary. There are other common choices, for example

𝑓(𝑥; 𝜃) = 1
2
[1 + erf(ℎ(𝑥; 𝜃))] (110)

where ℎ is linear in both 𝑥 and 𝜃 (in other words, 𝑓 is the cumulative probability distribution of a Gaussian). The
CLT serves as motivation for this choice. This is called a probit regression. 𝑓(𝑥; 𝜃) and Φ are qualitatively
similar, but the former is somewhat easier to deal with. The similarity seems notable because the logistic
regression is far more common than the probit regression, but only in light of the latter does the motivation for
the former become apparent.

5.4.3 Generalized Linear Models
Generalizing the previous two examples, we can write

⟨𝑌 ⟩𝜀 = 𝑔−1(𝛽𝑋) (111)

The expectation value on the left hand side is to be taken over stochastic noise assumed to connect the model to
observations, which here and in the Gaussian example we denote 𝜀. 𝑋 can have any number of dimensions and 𝛽
is a linear operator. The function 𝑔 : ℝ → ℝ is called a link function. We can think of this as a function of a
“mean value” given in terms of 𝑋, for example if 𝑔 = 𝟏, the expectation value of 𝑌  is simply 𝛽𝑋 as in our first
example.

Technically, the distribution of 𝜀 over which we take ⟨𝑌 ⟩ needn’t depend on the link function 𝑔. However, the
range of 𝑔 can inform our choice. In our first example, range(𝑔) = ℝ, so we chose 𝜀 ∼ 𝒩(0, 𝜎). In the logistic
regression, the range(𝑔) = [0, 1] so we chose a Bernoulli distribution, though we could just as easily have chosen
the beta distribution. Some common pairings of distribution and link function are shown in Table 9.

Distribution Support Link Function 𝑔(𝜇) Mean ⟨𝑌 ⟩

𝒩(𝜇, 𝜎2) ℝ 1 𝛽𝑋

Γ(𝛼, 𝛽) ℝ≥ − 1
𝜇 −(𝛽𝑋)−1

Pois(𝜆) ℤ≥ log(𝜇) 𝑒𝛽𝑋

Bern(𝑝) ℤ2 log( 𝜇
1−𝜇) (1 + 𝑒−𝛽𝑋)−1

Binom(𝑛, 𝑝) ℤ𝑛 log( 𝜇
𝑛−𝜇) (1 + 𝑒−𝛽𝑋)−1

Table 9: Common choices of link function.

5.4.4 Empirical Risk Minimization (ERM)
In the section on maximum likelihood estimation we have repeatedly, without explicit justification, split the
distribution of observed data into the variables 𝑋 and 𝑌 . While technically not a requirement, the reason for
doing this is that experiments typically have some controlled variable represented by 𝑋 and some response
variable represented by 𝑌 . These must fall in some joint probability distribution 𝑝𝑋𝑌 (𝑥, 𝑦). Another way of finding
a model of best fit is to define some loss function 𝐿 and minimize its expectation, for example

⟨𝐿(𝑌 , 𝑓(𝑋; 𝜃))⟩ = ∫d𝑃𝑋𝑌 (𝑥, 𝑦) 𝐿(𝑦, ℎ(𝑥; 𝜃)) (112)

Typically 𝐿 is a function that characterizes the “badness” of a model described by the function 𝑓(⋅; 𝜃), for example
the mean squared error. Typically the integral is estimated by summing over observed (𝑥, 𝑦) pairs and the model
parameters 𝜃 are determined by minimizing ⟨𝐿⟩.

5.5 Monte Carlo Integration
Consider the probability distribution

𝑝(𝑥) = {
1

vol(𝑉 ) ⇐ 𝑥 ∈ 𝑉
0 ⇐ 𝑥 ∉ 𝑉

(113)

for 𝑥 ∈ ℝ𝑛 with 𝑉 ⊂ ℝ𝑛 and vol(𝑉 ). Then, for any function 𝑓 : ℝ → ℝ𝑛

⟨𝑓(𝑋)⟩ = ∫
𝑉
d𝑛𝑥 𝑓(𝑥) (114)
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We can exploit this relationship to compute the integral ∫
𝑉
d𝑛𝑥 𝑓(𝑥) using an estimator for the mean of 𝑓 with

respect to the random variable 𝑋. As we have already seen, one such estimator is

𝑓 = 1
𝑚
∑
𝑚

𝑗=1
𝑓(𝑥𝑗) (115)

As we have seen var[𝑓] ∝ 𝑚, so that the statistical uncertainty in our integral decreases as 1/𝑚.

While this method of integration may seem very inefficient, note that the error scales with 1/𝑚 regardless of the
number of dimensions 𝑛. This method, called monte carlo integration, is therefore very efficient in large
dimensions.

Samples drawn where 𝑓(𝑥) is small must have a small contribution to ⟨𝑓(𝑋)⟩, so we’d like to avoid sampling too
much in those regions. We can improve the method by exchanging (113) for something else. We do this by, instead
of evaluating ⟨𝑓(𝑋)⟩, evaluating

⟨ 𝑓(𝑋′)
𝑝𝑋′(𝑋′)

⟩ = ∫
𝑉
d𝑛𝑥 𝑝𝑋′(𝑥)(

𝑓(𝑥)
𝑝𝑋′(𝑥)

) = ∫
𝑉
d𝑛𝑥 𝑓(𝑥) (116)

While the left hand side looks peculiar because of the presence of 𝑝𝑋′ inside the expectation value, it is merely a
function, so we are free to compute whatever expectation value we like. From this we see that an improved
estimator is

𝑓 ′ = 1
𝑚
∑
𝑚

𝑗=1

𝑓(𝑥𝑗)
𝑝𝑋′(𝑥𝑗)

(117)

for which var[𝑓 ′] = var[𝑓(𝑋′)/𝑝𝑋′(𝑋′)]/𝑚. This of course scales with 1/𝑚 just as var[𝑓] does, but we can now
try to reduce the variance by choosing a 𝑝𝑋′ which maintains as close to constant ration with 𝑓 as possible. One
might be tempted to then simply pick 𝑝𝑋′(𝑥) ∝ 𝑓(𝑥), but to do this we’d have to normalize 𝑓(𝑥), which requires
computing its integral, which is what we’re trying to do in the first place. Despite this, way may still be able to
significanltly reduce the variance of the estimator by choosing a 𝑝𝑋′ which can be efficiently sampled from.

6 Stochastic Processes
A stochastic processes is an uncountable set of random variables parameterized by some parameter 𝑡. For example
{𝑋(𝑡) | ∀𝑡 ∈ ℝ𝑛} where each 𝑋(𝑡) is a random variable. That is, we can think of 𝑋 as 𝑋(𝑡; 𝜔) where 𝜔 ∈ Ω for a
sample space Ω such that 𝑋(𝑡; ⋅) : Ω →ℳ is a random variable for each 𝑡 ∈ ℝ𝑛. Another way to think about this
is as a “function-valued random variable”. Obviously, this is a very broad class of objects samples of which can
include both smooth and discontinuous functions. To characterize them, we must consider the probability density
of each 𝑋(𝑡). For notational convenience we define

𝑚𝑋(𝑡) = ⟨𝑋(𝑡)⟩ (118)

In general, the probability densities at different points are related: that is 𝑋(𝑡1) and 𝑋(𝑡2) can be correlated.
Therefore, the covariance

𝐾𝑋(𝑡1, 𝑡2) = cov[𝑋(𝑡1),𝑋(𝑡2)] (119)

plays a key role in the study of stochastic processes. We refer to 𝐾𝑋 as the covariance function for the random
process 𝑋. In the future we will drop the subscript 𝑋 where convenient and where there is no risk of confusion.

A process is called strictly stationary if its distribution does not depend on 𝑡. More precisely, this means that the
joint distribution of {𝑋(𝑡) | 𝑡 ∈ 𝐴} is equal to the joint distribution of {𝑋(𝑡) | 𝑡 ∈ 𝐵} ∀𝐴,𝐵 ∈ ℝ𝑛. A weaker
notion of stationarity, sometimes called wide stationarity requires that

𝑚(𝑡) = const ∧ 𝐾(𝑡1, 𝑡2) = 𝐾(𝑔(𝑡1, 𝑡2)) (120)

where 𝑔 : ℝ𝑛 ×ℝ𝑛 → ℝ is a metric. Of course, 𝐾 can also possess additional symmetries, such as rotation, and we
can classify Gaussian processes by the symmetry properties of 𝐾.

6.1 Gaussian Processes
An important special case of a stochastic process is a Gaussian process in which 𝑋(𝑡) ∼ 𝒩𝑛(𝑚(𝑡),𝐾(𝑡, 𝑡)) ∀𝑡. In
this case, 𝑚(𝑡) and 𝐾(𝑡1, 𝑡2) fully specify the distribution of the process 𝑋 because these are the only parameters
of the distribution.
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The properties of multivariate Gaussians that we discussed in Section 4.1.2 now tell us everything we need to
know about the Gaussian process 𝑋. As an important example of this, suppose we have observed 𝑋(𝑡) at some set
of parameters 𝑡1, 𝑡2,…, 𝑡𝑙. To compute the conditional distribution 𝑋(𝑡) | 𝑋(𝑡1),𝑋(𝑡2), ⋯,𝑋(𝑡𝑙) we define

Σ = (𝐾(𝑡, 𝑡)Σ∗T(𝑡)
Σ∗(𝑡)
Σ∗∗ )

Σ∗𝑗 = 𝐾(𝑡, 𝑡𝑗) Σ∗∗𝑖𝑗 = 𝐾(𝑡𝑖, 𝑡𝑗) (1 ≤ 𝑖 ≤ 𝑙)(1 ≤ 𝑗 ≤ 𝑙)
(121)

These can be simply plugged into (79) to obtain the conditional distribution explicitly.

Strict stationarity and wide stationarity, discussed above, are equivalent for Gaussian processes.
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